“难题”(3)-- 意外的惊喜
发表时间:+-
有一个椭圆
x2 + 9y2 = 81
椭圆外有一点(27,3)。从这点向椭圆作切线,求这两点的斜率。
出题老师手下留情,y=3显然是其中一条。另一条对我来说有点头痛。
不知道算不算提示,这题是在教授隐函数求导以后。
注册日期:2009-08-01
访问总量:782301次
有一个椭圆
x2 + 9y2 = 81
椭圆外有一点(27,3)。从这点向椭圆作切线,求这两点的斜率。
出题老师手下留情,y=3显然是其中一条。另一条对我来说有点头痛。
不知道算不算提示,这题是在教授隐函数求导以后。
因为是二次曲线,因此用解析几何来做较容易:切线与二次曲线的交点,相当于二次方程的判别式为 0,即可得到斜率的两个解。
当然,如果是其他的“怪”曲线,求导-找切点坐标,就是标准做法了,是吧?
这道题找切点并不容易:因为除了一个切点(0,3)外,另一个切点的y坐标是负的。我在这里弄了半天才搞明白。
这次用隐函数求导,发现很容易,所以题名“意外的惊喜”。不记得40多年前是否用解析几何做过。即使做过肯定也繁的不得了,否则多少有些记忆。
用初等的解析几何就能做出,不比求导后再找切点更难在哪儿。
k=0, 1/4?